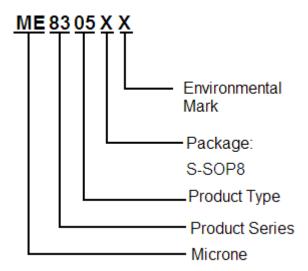


ME8305


# **LOW-Power Off-line Primary Side Regulation Controller ME8305**

#### **General Description**

The ME8305 is a high performance AC/DC power supply controller for battery charger and adapter applications. The device uses Pulse Frequency Modulation(PFM) method to build discontinuous conduction mode (DCM) flyback power supplies.

The ME8305 provides accurate constant voltage, constant current (CV/CC) regulation while removing the opto-coupler and secondary control circuitry. It also eliminates the need of loop compensation circuitry while maintaining stability. The ME8305 achieves excellent regulation and high average efficiency, yet meets the requirement for no-load consumption less than 30mW.

#### **Selection Guide**



#### **Features**

- Set-in high-voltage power switch tube of 700V and few peripheral components.
- Primary Side Control for Rectangular Constant Current and Constant Voltage Output
- Sub-microampere Start-up Current
- 30mW No-load Input Power Feasible
- Tight CV Regulation Performance
- Eliminates Opto-coupler and Secondary CV/CC
   Control Circuitry
- Eliminates Control Loop Compensation Circuitry
- Flyback Topology in DCM Operation
- Random Frequency Modulation to Reduce
   System EMI
- Built-in Soft Start
- Thermal Shutdown Protection
- Short Circuit Protection
- SOP8 Package

#### Typical Application

- Adapters/Chargers for Cell/Cordless Phones,
   PDAs, MP3 and Other Portable Apparatus
- LED Drivers
- Standby and Auxiliary Power Supplies

V02 <u>www.microne.com.cn</u> Page 1 of 7



### **Pin Configuration**

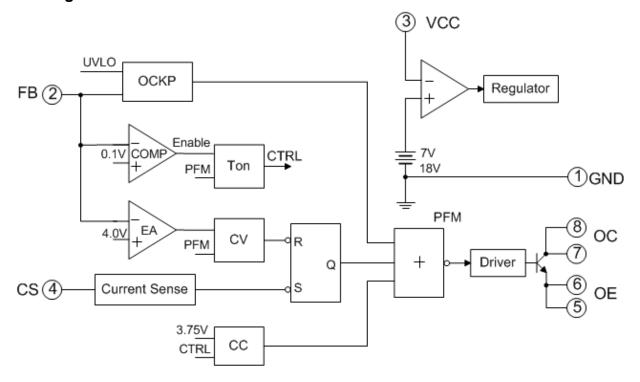


#### **Pin Assignment**

| Pin Number | Pin Name | Function                                        |  |  |
|------------|----------|-------------------------------------------------|--|--|
| 1          | GND      | Ground                                          |  |  |
| 2          | FB       | The voltage feedback from the auxiliary winding |  |  |
| 3          | VCC      | Supply voltage                                  |  |  |
| 4          | CS       | The primary current sense                       |  |  |
| 5,6        | OE       | Emitter electrode of power tube                 |  |  |
| 7,8        | ОС       | Output pins, meet switching transformer         |  |  |

### **Absolute Maximum Ratings (Note)**

| Parameter                              | Value      | Unit       |
|----------------------------------------|------------|------------|
| Supply Voltage V <sub>CC</sub>         | -0.3 to 30 | V          |
| Voltage at CS to GND                   | -0.3 to 7  | V          |
| FB input                               | -40 to 10  | V          |
| Endurance voltage of OC collector      | -0.3-700   | V          |
| Switching current of peak value        | 800        | mA         |
| Operating Junction Temperature         | 125        | $^{\circ}$ |
| Storage Temperature                    | -65 to 150 | $^{\circ}$ |
| Lead Temperature (Soldering, 10s)      | 300        | $^{\circ}$ |
| Thermal Resistance Junction-to-Ambient | 250        | °CM        |
| ESD (Machine Model)                    | 200        | V          |
| ESD (Human Body Model)                 | 2000       | V          |


Note: The absolute maximum ratings are rated values exceeding which the product could suffer physical damage.

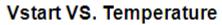
These values must therefore not be exceeded under any conditions.

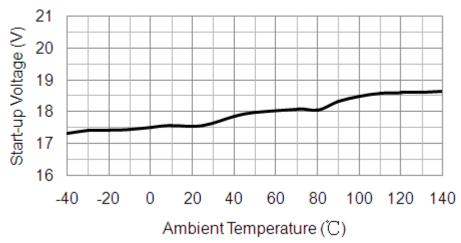
V02 <u>www.microne.com.cn</u> Page 2 of 7



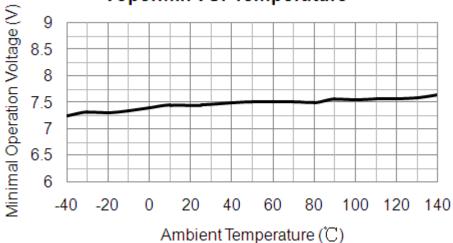
### **Block Diagram**



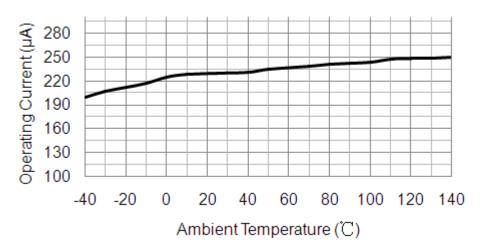

# Electrical Characteristics ( $V_{CC}$ =20V, $T_A$ =25 $^{\circ}$ C, unless otherwise specified)


| Parameter                                     | Symbol                | Conditions                     | Min  | Тур. | Max  | Unit       |  |  |  |
|-----------------------------------------------|-----------------------|--------------------------------|------|------|------|------------|--|--|--|
| UVLO Section                                  |                       |                                |      |      |      |            |  |  |  |
| Start-up Threshold                            | V <sub>TH (ST)</sub>  |                                | 15   | 17   | 19   | V          |  |  |  |
| Minimal Operating Voltage                     | $V_{OPR(min)}$        |                                | 6    | 7.5  | 9    | V          |  |  |  |
| Standby Current Section                       |                       |                                |      |      |      |            |  |  |  |
| Start-up Current                              | I <sub>ST</sub>       | $V_{CC} = V_{TH (ST)} - 0.5V,$ | -    | -    | 0.5  | μΑ         |  |  |  |
| Operating Current                             | I <sub>CC(OPR)</sub>  | Static                         | -    | 200  | 300  | μΑ         |  |  |  |
| Current Sense Section                         |                       |                                |      |      |      |            |  |  |  |
| Current Sense Threshold                       | V <sub>CS</sub>       |                                | 470  | 500  | 530  | mV         |  |  |  |
| Pre-Current Sense                             | $V_{CS(PRE)}$         |                                | 370  | 400  | 430  | mV         |  |  |  |
| Leading Edge Blanking                         |                       |                                | -    | 500  | -    | ns         |  |  |  |
| Feedback Input Section                        |                       |                                |      |      |      |            |  |  |  |
| Feedback Pin Input Leakage Current            | I <sub>FB</sub>       | V <sub>FB</sub> =4V            | 2.0  | 2.5  | 3.1  | μΑ         |  |  |  |
| Feedback Threshold Voltage                    | $V_{FB}$              |                                | 3.89 | 3.95 | 4.01 | V          |  |  |  |
| Output                                        |                       |                                |      |      |      |            |  |  |  |
| Maximum pressure resistance of switching tube | V <sub>OC</sub> (max) | loc=1mA, I <sub>E</sub> =0     | 700  | -    | -    | V          |  |  |  |
| on-saturation pressure drop                   | V <sub>CE</sub> (sat) | loc=600mA                      | -    | -    | 1    | V          |  |  |  |
| Output limit current                          |                       | Tj=0-100°C                     | 465  | 500  | 535  | mA         |  |  |  |
| Thermal Shutdown Protection                   |                       |                                |      |      |      |            |  |  |  |
| Thermal Shutdown Protection                   | T <sub>sd</sub>       |                                |      | 150  |      | $^{\circ}$ |  |  |  |

V02 <u>www.microne.com.cn</u> Page 3 of 7



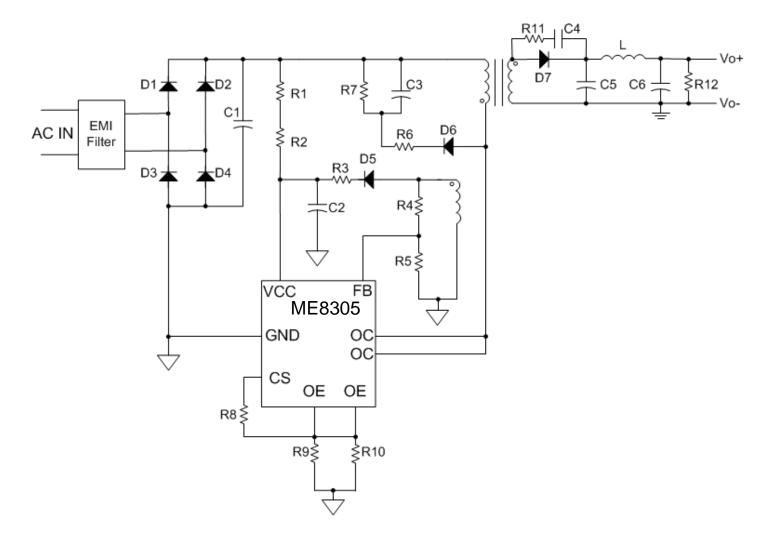

#### **Type Characteristics**






# Vopermin VS. Temperature



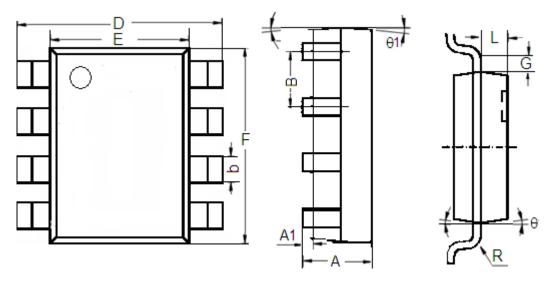

# loper VS. Temperature



V02 <u>www.microne.com.cn</u> Page 4 of 7



# Typical Application




V02 <u>www.microne.com.cn</u> Page 5 of 7



### **Packaging Information**

# Package type:SOP8 Unit:mm(inch)



| Character  | Dimensio       | on (mm) | Dimension (Inches) |       |  |
|------------|----------------|---------|--------------------|-------|--|
| Citaracter | Min            | Max     | Min                | Max   |  |
| А          | 1.350          | 1.750   | 0.053              | 0.069 |  |
| A1         | 0.1            | 0.3     | 0.004              | 0.012 |  |
| В          | 1.27(          | Тур.)   | 0.05(Typ.)         |       |  |
| b          | 0.330          | 0.510   | 0.013              | 0.020 |  |
| D          | 5.8            | 6.2     | 0.228              | 0.244 |  |
| E          | 3.800          | 4.000   | 0.150              | 0.157 |  |
| F          | 4.7            | 5.1     | 0.185              | 0.201 |  |
| L          | 0.675          | 0.725   | 0.027              | 0.029 |  |
| G          | 0.32(Typ.)     |         | 0.013(Typ.)        |       |  |
| R          | 0.15(Typ.)     |         | 0.006(Typ.)        |       |  |
| θ1         | 7 <sup>°</sup> |         | 7 <sup>°</sup>     |       |  |
| θ          | 8°             |         | 8°                 |       |  |

V02 <u>www.microne.com.cn</u> Page 6 of 7



- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams
  described herein whose related industrial properties, patents, or other rights belong to third parties.
  The application circuit examples explain typical applications of the products, and do not guarantee the
  success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality
  and reliability, the failure or malfunction of semiconductor products may occur. The user of these
  products should therefore give thorough consideration to safety design, including redundancy,
  fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community
  damage that may ensue.



V02 <u>www.microne.com.cn</u> Page 7 of 7