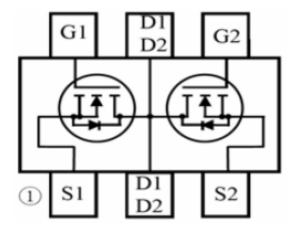


《理商:深圳市琪远电子有限公司 电话:(0755)86228541 / 17727576605 更多产品请访问: www.siitek.com.cn

MEM8205

N-Channel MOSFET MEM8205M6


General Description

MEM8205 Series Dual N-channel enhancement mode field-effect transistor ,produced with high cell density DMOS trench technology, which is especially used to minimize on-state resistance. This device particularly suits low voltage applications, and low power dissipation.

Features

- 20V/6A
 - $R_{DS(ON)} = 20m\Omega@V_{GS} = 4.5V, I_D = 4.5A$ $R_{DS(ON)} = 21m\Omega@V_{GS} = 3.85V, I_{D} = 3.5A$ $R_{DS(ON)} = 26m\Omega @ V_{GS} = 2.5V, I_D = 3A$
- High Density Cell Design For Ultra Low On-Resistance
- Surface mount package:SOT23-6L

Pin Configuration

Typical Application

- Battery management
- Power management
- Portable equipment
- Low power DC to DC converter.
- Load switch
- LCD adapter

Absolute Maximum Ratings

Parameter		Symbol	Ratings	Unit	
Drain-Source Voltage		V _{DSS}	20V	V	
Gate-Source Voltage		V _{GSS}	±12	V	
Drain	T 25℃	1	6	٨	
Current	T _A =25℃	I _D	O	A	
Pulsed Drain Current ^{1,2}		I _{DM}	20	А	
Total Power	SOT23-6	Pd	1.25	W	
Dissipation	TSSOP8	ru	1.5	vv	
operating junction temperature		Tj	150	°C	
Storage Temperature Range		T _{stg}	-65/150	°C	

Thermal Characteristics

Thermal Resistance, Junction-to-Ambient ³ RθJA	100	°C/W

Electrical Characteristics MEM8205M6

Parameter	Symbol	Test Condition	Min	Туре	Max	Unit	
	ļ	Static Characteristics	;				
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} =0V, I _D =250uA	20	21.5		V	
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS},$ $I_D = 250 u A$	0.5	0.66	1	V	
Gate-Body Leakage	I _{GSS}	$V_{DS}=0V$, $V_{GS}=12V$			100	nA	
Cale-Dody Leakage		$V_{DS}=0V$, $V_{GS}=-12V$			-100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =16V V _{GS} =0V		2.5	1000	nA	
Static Drain-Source	R _{DS(ON)}	V_{GS} =4.5V,I _D =6A		20	24	mΩ	
On-Resistance		V _{GS} =3.85V,I _D =5A		21	25	mΩ	
On Resistance		V_{GS} =2.5V,I _D =4A		26	35	mΩ	
Forward Transconductance	g fs	$V_{\text{DS}} = 5V, I_{\text{D}} = 4.5A$		10		S	
Drain-Source Diode Forward Current	I _S				1.7	А	
Source-drain (diode forward) voltage	V_{SD}	V _{GS} =0V,I _D =1.25A		0.8	1.0	V	
	Dy	ynamic Characteristic	cs				
Input Capacitance	Ciss	$V_{DS} = 8 V,$		600		pF	
Output Capacitance	Coss	$V_{GS} = 0 V,$		330			
Reverse Transfer Capacitance	Crss	f = 1 MHz		140			
	Sw	vitching Characteristi	cs				
Turn-On Delay Time	td(on)	$V_{DD} = 10 V,$		8	20		
Rise Time	tr	$R_L = 10 \Omega$		10	25	1	
Turn-Off Delay Time	td(off)	I _D =1 A, V _{GEN} = 4.5 V,		35	70	ns	
Fall-Time	tf	Rg = 6 Ω		30	60		
Total Gate Charge	Qg	V _{DS} = 10 V,		10	15		
Gate-Source Charge	Qgs	$V_{GS} = 4.5 V,$		2.3		nc	
Gate-Drain Charge	Qgd	I _D = 6A		2.9			

 $1\,{\scriptstyle \smallsetminus}\,$ Pulse width limited by Max. junction temperature.


 2_{\times} Pulse width <300us , duty cycle <2%.

3, Surface Mounted on FR4 Board, t < 10 sec.

MEM8205

Typical Performance Characteristics

MEM8205

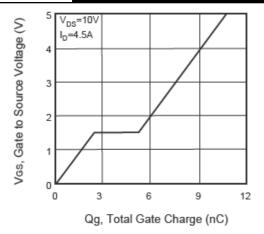


Figure 7. Gate Charge

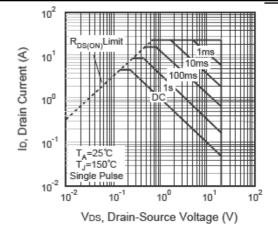
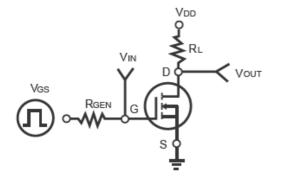



Figure 8. Maximum Safe Operating Area

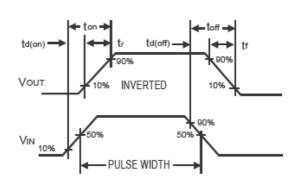


Figure 9. Switching Test Circuit

Figure 10. Switching Waveforms

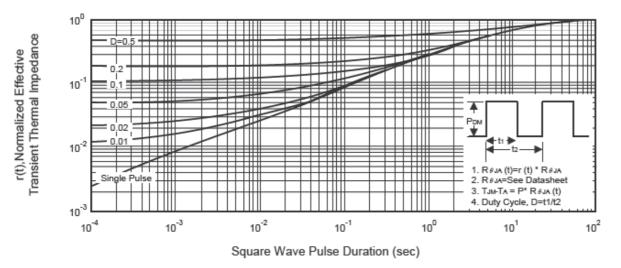
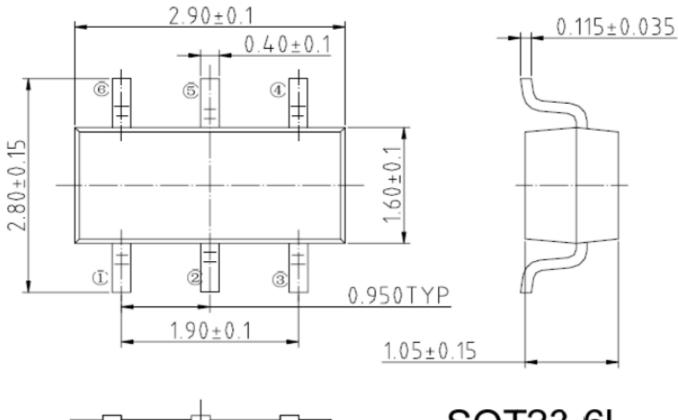
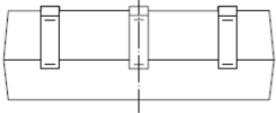




Figure 11. Normalized Thermal Transient Impedance Curve

Package Information

SOT23-6L Unit:mm

- The information described herein is subject to change without notice.
- Nanjing Micro One Electronics Inc is not responsible for any problems caused by circuits or diagrams described herein whose related industrial properties, patents, or other rights belong to third parties. The application circuit examples explain typical applications of the products, and do not guarantee the success of any specific mass-production design.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Nanjing Micro One Electronics Inc is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, or any apparatus installed in airplanes and other vehicles, without prior written permission of Nanjing Micro One Electronics Inc.
- Although Nanjing Micro One Electronics Inc exerts the greatest possible effort to ensure high quality and reliability, the failure or malfunction of semiconductor products may occur. The user of these products should therefore give thorough consideration to safety design, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.

